Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates.

نویسندگان

  • Srivatsan Kidambi
  • Lufang Sheng
  • Martin L Yarmush
  • Mehmet Toner
  • Ilsoon Lee
  • Christina Chan
چکیده

This paper describes the formation of patterned cell co-cultures using the layer-by-layer deposition of synthetic ionic polymers and without the aid of adhesive proteins/ligands such as collagen or fibronectin. In this study, we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated polystyrene (SPS) as the polycation and polyanion, respectively, to build the multilayer films. We formed SPS patterns on polyelectrolyte multilayer (PEM) surfaces either by microcontact printing PDAC onto SPS surfaces or vice-versa. To create patterned co-cultures on PEMs, we capitalize on the preferential attachment and spreading of primary hepatocytes on SPS as opposed to PDAC surfaces. In contrast, fibroblasts readily attached to both PDAC and SPS surfaces, and as a result, we were able to obtain patterned co-cultures of fibroblast and primary hepatocytes on synthetic PEM surfaces. We characterized the morphology and hepatic-specific functions of the patterned cell co-cultures with microscopy and biochemical assays. Our results suggest an alternative approach to fabricating controlled co-cultures with specified cell-cell and cell-surface interactions; this approach provides flexibility in designing cell-specific surfaces for tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons.

We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties in...

متن کامل

Controlling primary hepatocyte adhesion and spreading on protein-free polyelectrolyte multilayer films.

The development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion could lead to significant advances in the fields of tissue engineering and biosensors. This Communication describes the successful attachment and spreading of primary hepatocytes on polyelectrolyte multilayer (PEM) films without the use of adhesive protein...

متن کامل

Polyelectrolyte Multilayer-Treated Electrodes for Real-Time Electronic Sensing of Cell Proliferation

We report on the use of polyelectrolyte multilayer (PEM) coatings as a non-biological surface preparation to facilitate uniform cell attachment and growth on patterned thin-film gold (Au) electrodes on glass for impedance-based measurements. Extracellular matrix (ECM) proteins are commonly utilized as cell adhesion promoters for electrodes; however, they exhibit degradation over time, thereby i...

متن کامل

Selective depositions on polyelectrolyte multilayers: self-assembled monolayers of m-dPEG acid as molecular template.

This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of c...

متن کامل

From the 2-dimensional unstable polyelectrolyte multilayer to the 3-dimensional stable dry polyelectrolyte capsules.

Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007